Calculus of Inverse Hyperbolic Functions
Looking at the graphs of the hyperbolic functions, we see that with appropriate range restrictions, they all have inverses. The inverse hyperbolic functions have specific domain and range restrictions, summarized in the table below:
Function | Domain | Range |
---|---|---|
[latex]{\text{sinh}}^{-1}x[/latex] | [latex](\text{−}\infty ,\infty )[/latex] | [latex](\text{−}\infty ,\infty )[/latex] |
[latex]{\text{cosh}}^{-1}x[/latex] | [latex](1,\infty )[/latex] | [latex][0,\infty )[/latex] |
[latex]{\text{tanh}}^{-1}x[/latex] | [latex](-1,1)[/latex] | [latex](\text{−}\infty ,\infty )[/latex] |
[latex]{\text{coth}}^{-1}x[/latex] | [latex](\text{−}\infty ,-1)\cup (1,\infty )[/latex] | [latex](\text{−}\infty ,0)\cup (0,\infty )[/latex] |
[latex]{\text{sech}}^{-1}x[/latex] | [latex](0\text{, 1})[/latex] | [latex][0,\infty )[/latex] |
[latex]{\text{csch}}^{-1}x[/latex] | [latex](\text{−}\infty ,0)\cup (0,\infty )[/latex] | [latex](\text{−}\infty ,0)\cup (0,\infty )[/latex] |
The graphs of the inverse hyperbolic functions are shown in the following figure.

To find the derivatives of the inverse functions, we use implicit differentiation. We have
Recall that [latex]{\text{cosh}}^{2}y-{\text{sinh}}^{2}y=1,[/latex] so [latex]\text{cosh}y=\sqrt{1+{\text{sinh}}^{2}y}.[/latex] Then,
We can derive differentiation formulas for the other inverse hyperbolic functions in a similar fashion.
derivatives of inverse hyperbolic functions
[latex]f(x)[/latex] | [latex]\frac{d}{dx}f(x)[/latex] |
---|---|
[latex]{\text{sinh}}^{-1}x[/latex] | [latex]\frac{1}{\sqrt{1+{x}^{2}}}[/latex] |
[latex]{\text{cosh}}^{-1}x[/latex] | [latex]\frac{1}{\sqrt{{x}^{2}-1}}[/latex] |
[latex]{\text{tanh}}^{-1}x[/latex] | [latex]\frac{1}{1-{x}^{2}}[/latex] |
[latex]{\text{coth}}^{-1}x[/latex] | [latex]\frac{1}{1-{x}^{2}}[/latex] |
[latex]{\text{sech}}^{-1}x[/latex] | [latex]\frac{-1}{x\sqrt{1-{x}^{2}}}[/latex] |
[latex]{\text{csch}}^{-1}x[/latex] | [latex]\frac{-1}{|x|\sqrt{1+{x}^{2}}}[/latex] |
Note that the derivatives of [latex]{\text{tanh}}^{-1}x[/latex] and [latex]{\text{coth}}^{-1}x[/latex] are the same. Thus, when we integrate [latex]1\text{/}(1-{x}^{2}),[/latex] we need to select the proper antiderivative based on the domain of the functions and the values of [latex]x.[/latex]
integral formulas for inverse hyperbolic functions
[latex]\begin{array}{cccccccc}\hfill \displaystyle\int \frac{1}{\sqrt{1+{u}^{2}}}du& =\hfill & {\text{sinh}}^{-1}u+C\hfill & & & \hfill \displaystyle\int \frac{1}{u\sqrt{1-{u}^{2}}}du& =\hfill & \text{−}{\text{sech}}^{-1}|u|+C\hfill \\ \hfill \displaystyle\int \frac{1}{\sqrt{{u}^{2}-1}}du& =\hfill & {\text{cosh}}^{-1}u+C\hfill & & & \hfill \displaystyle\int \frac{1}{u\sqrt{1+{u}^{2}}}du& =\hfill & \text{−}{\text{csch}}^{-1}|u|+C\hfill \\ \hfill \displaystyle\int \frac{1}{1-{u}^{2}}du& =\hfill & \bigg\{\begin{array}{c}{\text{tanh}}^{-1}u+C\text{ if }|u|<1\hfill \\ {\text{coth}}^{-1}u+C\text{ if }|u|>1\hfill \end{array}\hfill & & & & & \end{array}[/latex]
Evaluate the following derivatives:
- [latex]\frac{d}{dx}({\text{sinh}}^{-1}(\frac{x}{3}))[/latex]
- [latex]\frac{d}{dx}{({\text{tanh}}^{-1}x)}^{2}[/latex]
Evaluate the following integrals:
- [latex]\displaystyle\int \frac{1}{\sqrt{{x}^{2}-4}}dx,\text{}x>2[/latex]
- [latex]\displaystyle\int \frac{1}{\sqrt{1-{e}^{2x}}}dx[/latex]