Calculus of the Hyperbolic Functions: Fresh Take

  • Differentiate and integrate hyperbolic functions and their inverse forms
  • Understand the practical situations where the catenary curve appears

Derivatives and Integrals of the Hyperbolic Functions

The Main Idea 

  • Definitions of Hyperbolic Functions:
    • [latex]\sinh x = \frac{e^x - e^{-x}}{2}[/latex]
    • [latex]\cosh x = \frac{e^x + e^{-x}}{2}[/latex]
  • Key Derivatives:
    • [latex]\frac{d}{dx}(\sinh x) = \cosh x[/latex]
    • [latex]\frac{d}{dx}(\cosh x) = \sinh x[/latex]
    • [latex]\frac{d}{dx}(\tanh x) = \text{sech}^2 x[/latex]
  • Key Integrals:
    • [latex]\int \sinh x , dx = \cosh x + C[/latex]
    • [latex]\int \cosh x , dx = \sinh x + C[/latex]
    • [latex]\int \text{sech}^2 x , dx = \tanh x + C[/latex]
  • Similarities with Trigonometric Functions:
    • Derivatives of sinh and sin are similar
    • But [latex]\frac{d}{dx}(\cos x) = -\sin x[/latex], while [latex]\frac{d}{dx}(\cosh x) = \sinh x[/latex]
  • U-substitution is often useful for integrals involving hyperbolic functions

Evaluate the following derivatives:

  1. [latex]\frac{d}{dx}(\text{tanh}({x}^{2}+3x))[/latex]
  2. [latex]\frac{d}{dx}(\dfrac{1}{{(\text{sinh}x)}^{2}})[/latex]

Evaluate the following integrals:

  1. [latex]\displaystyle\int {\text{sinh}}^{3}x\text{cosh}xdx[/latex]
  2. [latex]\displaystyle\int {\text{sech}}^{2}(3x)dx[/latex]

Evaluate the following integral:

[latex]\int x \sinh(x^2) , dx[/latex]

Calculus of Inverse Hyperbolic Functions

The Main Idea 

  • All hyperbolic functions have inverses with appropriate range restrictions
  • Key Derivatives:
    • [latex]\frac{d}{dx}(\sinh^{-1} x) = \frac{1}{\sqrt{1+x^2}}[/latex]
    • [latex]\frac{d}{dx}(\cosh^{-1} x) = \frac{1}{\sqrt{x^2-1}}[/latex]
    • [latex]\frac{d}{dx}(\tanh^{-1} x) = \frac{1}{1-x^2}[/latex]
  • Key Integrals:
    • [latex]\int \frac{1}{\sqrt{1+u^2}} du = \sinh^{-1} u + C[/latex]
    • [latex]\int \frac{1}{\sqrt{u^2-1}} du = \cosh^{-1} u + C[/latex]
    • [latex]\int \frac{1}{1-u^2} du = \begin{cases} \tanh^{-1} u + C & \text{if } |u| < 1 \ \coth^{-1} u + C & \text{if } |u| > 1 \end{cases}[/latex]
  • Each inverse hyperbolic function has specific domain and range restrictions
  • Derivatives of inverse hyperbolic functions are found using implicit differentiation

Evaluate the following derivatives:

  1. [latex]\frac{d}{dx}({\text{cosh}}^{-1}(3x))[/latex]
  2. [latex]\frac{d}{dx}{({\text{coth}}^{-1}x)}^{3}[/latex]

Evaluate the following integrals:

  1. [latex]\displaystyle\int \frac{1}{\sqrt{4{x}^{2}-1}}dx[/latex]
  2. [latex]\displaystyle\int \frac{1}{2x\sqrt{1-9{x}^{2}}}dx[/latex]

Evaluate the following integral:

[latex]\int \frac{x}{\sqrt{x^2+9}} dx[/latex]

Applications of Hyperbolic Functions

The Main Idea 

  • Catenary Curves:
    • A catenary is the curve formed by a hanging cable or chain under uniform gravity
    • Mathematically modeled by: [latex]y = a \cosh(\frac{x}{a})[/latex]
  • Arc Length Formula:
    • Used to calculate the length of a catenary
    • [latex]\text{Arc Length} = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx[/latex]
  • Hyperbolic Function Properties:
    • [latex]1 + \sinh^2 x = \cosh^2 x[/latex]
    • This identity is useful in simplifying arc length calculations

Assume a hanging cable has the shape [latex]15\text{cosh}\left(\frac{x}{15}\right)[/latex] for [latex]-20\le x\le 20.[/latex] Determine the length of the cable (in feet).

A suspension bridge cable forms a catenary with the equation [latex]y = 50 \cosh(\frac{x}{50})[/latex], where [latex]x[/latex] and [latex]y[/latex] are measured in meters. The cable is anchored at [latex]x = -100[/latex] and [latex]x = 100[/latex]. Calculate the length of the cable.