Approximating Areas: Fresh Take

  • Estimate the area under a curve by adding up the areas of rectangles
  • Estimate the area under a curve using Riemann sums

Approximating Area

The Main Idea 

  • Area under a curve can be approximated using rectangles
  • Two main methods: left-endpoint and right-endpoint approximations
  • Increasing the number of rectangles improves accuracy
  • Riemann sums formalize this approximation process
  • Partitions:
    • Divide interval [latex][a,b][/latex] into n subintervals
    • Regular partition: subintervals of equal width [latex]\Delta x = \frac{(b-a)}{n}[/latex]
  • Left-Endpoint Approximation:
    • [latex]L_n = \sum_{i=1}^n f(x_{i-1})\Delta x[/latex]
    • Rectangle heights based on function value at left endpoint
  • Right-Endpoint Approximation:
    • [latex]R_n = \sum_{i=1}^n f(x_i)\Delta x[/latex]
    • Rectangle heights based on function value at right endpoint
  • Convergence:
    • As [latex]n[/latex] increases, approximations generally become more accurate
    • Left and right approximations often converge to the true area
Write in sigma notation and evaluate the sum of terms [latex]2^i[/latex] for [latex]i=3,4,5,6[/latex].

Find the sum of the values of [latex]f(x)=x^3[/latex] over the integers [latex]1,2,3,\cdots,10[/latex].

Find left and right-endpoint approximations for [latex]\int_0^2 x^2 dx[/latex] with [latex]n = 4[/latex].

Riemann Sums

The Main Idea 

  • Riemann sums generalize left and right endpoint approximations. They allow evaluation of the function at any point within each subinterval
  • As the number of subintervals increases, the approximation improves
  • Riemann sums can be used to define the area under a curve
  • Riemann Sum Definition:
    • [latex]\displaystyle\sum_{i=1}^{n} f(x_i^*)\Delta x[/latex] where [latex]x_i^*[/latex] is any point in the subinterval [latex][x_{i-1},x_i][/latex]
  • Area Under a Curve:
    • [latex]A=\underset{n\to \infty }{\lim}\displaystyle\sum_{i=1}^{n} f(x_i^*)\Delta x[/latex]
  • Upper and Lower Sums:
    • Upper sum:
      • Choose [latex]x_i^*[/latex] for maximum [latex]f(x_i^*)[/latex] in each subinterval
    • Lower sum:
      • Choose [latex]x_i^*[/latex] for minimum [latex]f(x_i^*)[/latex] in each subinterval
  • Convergence:
    • For continuous functions, the limit of Riemann sums is unique
    • The limit doesn’t depend on the choice of [latex]x_i^*[/latex]

Find a lower sum for [latex]f(x)= \sin x[/latex] over the interval [latex][a,b]=[0,\frac{\pi }{2}][/latex]; let [latex]n=6[/latex].

Using the function [latex]f(x)= \sin x[/latex] over the interval [latex][0,\frac{\pi}{2}][/latex], find an upper sum; let [latex]n=6[/latex].