Analytical Applications of Derivatives: Get Stronger Answer Key

Related Rates

  1. 88
  2. 13101310
  3. 2323 ft/sec
  4. The distance is decreasing at 390390 mi/h.
  5. The distance between them shrinks at a rate of 132013101.5132013101.5 mph.
  6.  
  7. 9292 ft/sec
  8.  
  9. It grows at a rate 4949 ft/sec
  10.  
  11. The distance is increasing at 13526261352626 ft/sec
  12. 5656 m/sec
  13. 240πm2240πm2/sec
  14. 12π cm
  15. The area is increasing at a rate (33)8ft2/sec.
  16. The depth of the water decreases at 128125π ft/min.
  17. The volume is decreasing at a rate of (25π)16ft3/min.
  18. The water flows out at rate 2π5m3/min.
  19. 32 m/sec
  20. The angle decreases at 4001681 rad/sec.
  21. 100π mi/min
  22. The angle is changing at a rate of 1125 rad/sec.
  23. The distance is increasing at a rate of 62.50 ft/sec.
  24. The distance is decreasing at a rate of 11.99 ft/sec.

Linear Approximations and Differentials

  1.  
  2. f(a)=0
  3.  
  4. The linear approximation exact when y=f(x) is linear or constant.
  5. L(x)=1214(x2)
  6. L(x)=1
  7. L(x)=0
  8. 0.02
  9. 1.9996875
  10. 0.001593
  11. 1; error,  0.00005
  12. 0.97; error,  0.0006
  13. 31600; error,  4.632×107
  14. dy=(cosxxsinx)dx
  15. dy=(x22x2(x1)2)dx
  16. dy=1(x+1)2dx, 116
  17. dy=9x2+12x22(x+1)3/2dx, –0.1
  18. dy=(3x2+21x2)dx, 0.2
  19. 12xdx
  20. 4πr2dr
  21. 1.2πcm3
  22. 100ft3
  23.  
  24.  
  25.  

Maxima and Minima

  1. Answers may vary
  2. Answers will vary
  3. No; answers will vary
  4. Since the absolute maximum is the function (output) value rather than the x value, the answer is no; answers will vary
  5. When a=0
  6. Absolute minimum at 3; Absolute maximum at −2.2; local minima at −2, 1; local maxima at −1, 2
  7. Absolute minima at −2, 2; absolute maxima at −2.5, 2.5; local minimum at 0; local maxima at −1, 1
  8. Answers may vary.
  9. Answers may vary.
  10. x=1
  11. None
  12. x=0
  13. None
  14. x=1,1
  15. Absolute maximum: x=4, y=332; absolute minimum: x=1, y=3
  16. Absolute minimum: x=12, y=4
  17. Absolute maximum: x=2π, y=2π; absolute minimum: x=0, y=0
  18. Absolute maximum: x=3; absolute minimum: 1x1, y=2
  19. Absolute maximum: x=π4, y=2; absolute minimum: x=5π4, y=2
  20. Absolute minimum: x=2, y=1
  21. Absolute minimum: x=3, y=135; local maximum: x=0, y=0; local minimum: x=1, y=7
  22. Local maximum: x=122, y=342; local minimum: x=1+22, y=3+42
  23. Absolute maximum: x=22, y=32; absolute minimum: x=22, y=32
  24. Local maximum: x=2, y=59; local minimum: x=1, y=130
  25. Absolute maximum: x=0, y=1; absolute minimum: x=2,2, y=0
  26. Absolute minima: x=0, x=2, y=1; local maximum at x=1, y=2
  27. No maxima/minima if a is odd, minimum at x=1 if a is even

The Mean Value Theorem

  1.  
  2. One example is f(x)=|x|+3,2x2
  3.  
  4. Yes, but the Mean Value Theorem still does not apply
  5. (,0),(0,)
  6. (,2),(2,)
  7. 2 points]
  8. 5 points
  9. c=233
  10. c=12,1,32
  11. c=1
  12. Not differentiable
  13. Not differentiable
  14. Yes
  15. The Mean Value Theorem does not apply since the function is discontinuous at x=14,34,54,74.
  16. Yes
  17. The Mean Value Theorem does not apply; discontinuous at x=0.
  18. Yes
  19. The Mean Value Theorem does not apply; not differentiable at x=0.
  20. c=±1πcos1(π2); c=±0.1533
  21. The Mean Value Theorem does not apply.
  22. 12c+12c3=5212880; c=3.133,5.867
  23. Yes
  24. It is constant.

Derivatives and the Shape of a Graph

  1.  
  2. It is not a local maximum/minimum because f does not change sign
  3.  
  4. No
  5.  
  6. False; for example, y=x.
  7.  
  8. Increasing for 2<x<1 and x>2; decreasing for x<2 and 1<x<2
  9. Decreasing for x<1; increasing for x>1
  10. Decreasing for 2<x<1 and 1<x<2; increasing for 1<x<1 and x<2 and x>2
    1. Increasing over 2<x<1,0<x<1,x>2; decreasing over x<21<x<0,1<x<2
    2. maxima at x=1 and x=1, minima at x=2 and x=0 and x=2
    1. Increasing over x>0, decreasing over x<0
    2. Minimum at x=0
  11. Concave up on all x, no inflection points
  12. Concave up on all x, no inflection points
  13. Concave up for x<0 and x>1, concave down for 0<x<1, inflection points at x=0 and x=1
  14. Answers will vary
  15. Answers will vary
    1. Concave up for x>43, concave down for x<43
    2. Inflection point at x=43
    1. Increasing over x<0 and x>4, decreasing over 0<x<4
    2. Maximum at x=0, minimum at x=4
    3. Concave up for x>2, concave down for x<2
    4. Infection point at x=2
    1. Increasing over x<0 and x>6011, decreasing over 0<x<6011
    2. Minimum at x=6011
    3. Concave down for x<5411, concave up for x>5411
    4. Inflection point at x=5411
    1. Increasing over x>12, decreasing over x<12
    2. Minimum at x=12
    3. Concave up for all x
    4. No inflection points
    1. Increases over 14<x<34, decreases over x>34 and x<14
    2. Minimum at x=14, maximum at x=34
    3. Concave up for 34<x<14, concave down for x<34 and >14
    4. Inflection points at x=34,x=14
    1. Increasing for all x
    2. No local minimum or maximum
    3. Concave up for x>0, concave down for x<0
    4. Inflection point at x=0
    1. Increasing for all x where defined
    2. No local minima or maxima
    3. Concave up for x<1, concave down for x>1
    4. No inflection points in domain
    1. Increasing over π4<x<3π4, decreasing over x>3π4,x<π4
    2. Minimum at x=π4, maximum at x=3π4
    3. Concave up for π2<x<π2, concave down for x<π2,x>π2
    4. Infection points at x=±π2
    1. Increasing over x>4, decreasing over 0<x<4
    2. Minimum at x=4
    3. Concave up for 0<x<832, concave down for x>832
    4. Inflection point at x=832
  16. f>0,f>0,f<0
  17. f>0,f<0,f<0
  18. f>0,f>0,f>0
  19. True, by the Mean Value Theorem]
  20. True, examine derivative