Since the absolute maximum is the function (output) value rather than the [latex]x[/latex] value, the answer is no; answers will vary
When [latex]a=0[/latex]
Absolute minimum at [latex]3[/latex]; Absolute maximum at −[latex]2.2[/latex]; local minima at −[latex]2[/latex], [latex]1[/latex]; local maxima at −[latex]1[/latex], [latex]2[/latex]
Absolute minima at −[latex]2[/latex], [latex]2[/latex]; absolute maxima at −[latex]2.5[/latex], [latex]2.5[/latex]; local minimum at [latex]0[/latex]; local maxima at −[latex]1[/latex], [latex]1[/latex]
The Mean Value Theorem does not apply since the function is discontinuous at [latex]x=\frac{1}{4}, \, \frac{3}{4}, \, \frac{5}{4}, \, \frac{7}{4}[/latex].
Yes
The Mean Value Theorem does not apply; discontinuous at [latex]x=0[/latex].
Yes
The Mean Value Theorem does not apply; not differentiable at [latex]x=0[/latex].
It is not a local maximum/minimum because [latex]f^{\prime}[/latex] does not change sign
No
False; for example, [latex]y=\sqrt{x}[/latex].
Increasing for [latex]-2 < x < 1[/latex] and [latex]x > 2[/latex]; decreasing for [latex]x < 2[/latex] and [latex]-1 < x < 2[/latex]
Decreasing for [latex]x < 1[/latex]; increasing for [latex]x > 1[/latex]
Decreasing for [latex]-2 < x < -1[/latex] and [latex]1 < x < 2[/latex]; increasing for [latex]-1 < x < 1[/latex] and [latex]x < -2[/latex] and [latex]x > 2[/latex]
Increasing over [latex]-2 < x < 1, \, 0 < x < 1, \, x > 2[/latex]; decreasing over [latex]x < -2 \, -1 < x < 0, \, 1 < x < 2[/latex]
maxima at [latex]x=-1[/latex] and [latex]x=1[/latex], minima at [latex]x=-2[/latex] and [latex]x=0[/latex] and [latex]x=2[/latex]
Increasing over [latex]x > 0[/latex], decreasing over [latex]x < 0[/latex]
Minimum at [latex]x=0[/latex]
Concave up on all [latex]x[/latex], no inflection points
Concave up on all [latex]x[/latex], no inflection points
Concave up for [latex]x < 0[/latex] and [latex]x > 1[/latex], concave down for [latex]0 < x < 1[/latex], inflection points at [latex]x=0[/latex] and [latex]x=1[/latex]
Answers will vary
Answers will vary
Concave up for [latex]x > \frac{4}{3}[/latex], concave down for [latex]x < \frac{4}{3}[/latex]
Inflection point at [latex]x=\frac{4}{3}[/latex]
Increasing over [latex]x < 0[/latex] and [latex]x > 4[/latex], decreasing over [latex]0 < x < 4[/latex]
Maximum at [latex]x=0[/latex], minimum at [latex]x=4[/latex]
Concave up for [latex]x > 2[/latex], concave down for [latex]x < 2[/latex]
Infection point at [latex]x=2[/latex]
Increasing over [latex]x < 0[/latex] and [latex]x > \frac{60}{11}[/latex], decreasing over [latex]0 < x < \frac{60}{11}[/latex]
Minimum at [latex]x=\frac{60}{11}[/latex]
Concave down for [latex]x < \frac{54}{11}[/latex], concave up for [latex]x > \frac{54}{11}[/latex]
Inflection point at [latex]x=\frac{54}{11}[/latex]
Increasing over [latex]x > -\frac{1}{2}[/latex], decreasing over [latex]x < -\frac{1}{2}[/latex]
Minimum at [latex]x=-\frac{1}{2}[/latex]
Concave up for all [latex]x[/latex]
No inflection points
Increases over [latex]-\frac{1}{4} < x < \frac{3}{4}[/latex], decreases over [latex]x > \frac{3}{4}[/latex] and [latex]x < -\frac{1}{4}[/latex]
Minimum at [latex]x=-\frac{1}{4}[/latex], maximum at [latex]x=\frac{3}{4}[/latex]
Concave up for [latex]-\frac{3}{4} < x < \frac{1}{4}[/latex], concave down for [latex]x < \frac{3}{4}[/latex] and [latex]> \frac{1}{4}[/latex]
Inflection points at [latex]x=-\frac{3}{4}, \, x=\frac{1}{4}[/latex]
Increasing for all [latex]x[/latex]
No local minimum or maximum
Concave up for [latex]x > 0[/latex], concave down for [latex]x < 0[/latex]
Inflection point at [latex]x=0[/latex]
Increasing for all [latex]x[/latex] where defined
No local minima or maxima
Concave up for [latex]x < 1[/latex], concave down for [latex]x > 1[/latex]
No inflection points in domain
Increasing over [latex]-\frac{\pi }{4} < x < \frac{3\pi }{4}[/latex], decreasing over [latex]x > \frac{3\pi }{4}, \, x < -\frac{\pi }{4}[/latex]
Minimum at [latex]x=-\frac{\pi }{4}[/latex], maximum at [latex]x=\frac{3\pi }{4}[/latex]
Concave up for [latex]-\frac{\pi }{2} < x < \frac{\pi }{2}[/latex], concave down for [latex]x < \frac{\pi }{2}, \, x > \frac{\pi }{2}[/latex]
Infection points at [latex]x=\pm \frac{\pi }{2}[/latex]
Increasing over [latex]x > 4[/latex], decreasing over [latex]0 < x < 4[/latex]
Minimum at [latex]x=4[/latex]
Concave up for [latex]0 < x < 8\sqrt[3]{2}[/latex], concave down for [latex]x > 8\sqrt[3]{2}[/latex]