Techniques for Integration: Get Stronger Answer Key

Substitution

  1.  
  2. u=h(x)u=h(x)
  3. du=8xdx;f(u)=18u
  4. 15(x+1)5+C
  5. 112(32x)6+C
  6. x2+1+C
  7. 18(x22x)4+C
  8. sinθsin3θ3+C
  9. (1x)101101(1x)100100+C
  10. 122(711x2)+C
  11. cos4θ4+C
  12. cos3(πt)3π+C
  13. 14cos2(t2)+C
  14. 13(x33)+C
  15. 2(y32)31y3
  16. 133(1cos3θ)11+C
  17. 112(sin3θ3sin2θ)4+C
  18. L50=8.5779. The exact area is 818
  19. L50=0.006399 … The exact area is 0.
  20. u=1+x2,du=2xdx,1221u1/2du=21
  21. u=1+t3,du=3t2du,1321u1/2du=23(21)
  22. u=cosθ,du=sinθdθ,11/2u4du=13(221)
  23. Two graphs. The first shows the function f(x) = cos(ln(2x)) / x, which increases sharply over the approximate interval (0,.25) and then decreases gradually to the x axis. The second shows the function f(x) = sin(ln(2x)), which decreases sharply on the approximate interval (0, .25) and then increases in a gently curve into the first quadrant.
    The antiderivative is y=sin(ln(2x)). Since the antiderivative is not continuous at x=0, one cannot find a value of C that would make y=sin(ln(2x))C work as a definite integral.
  24. Two graphs. The first is the function f(x) = sin(x) / cos(x)^3 over [-5pi/16, 5pi/16]. It is an increasing concave down function for values less than zero and an increasing concave up function for values greater than zero. The second is the fuction f(x) = ½ sec(x)^2 over the same interval. It is a wide, concave up curve which decreases for values less than zero and increases for values greater than zero.
    The antiderivative is y=12sec2x. You should take C=2 so that F(π3)=0.
  25. Two graphs. The first shows the function f(x) = 3x^2 * sqrt(2x^3 + 1). It is an increasing concave up curve starting at the origin. The second shows the function f(x) = 1/3 * (2x^3 + 1)^(1/3). It is an increasing concave up curve starting at about 0.3.
    The antiderivative is y=13(2x3+1)3/2. One should take C=13.
  26. No, because the integrand is discontinuous at x=1.
  27. u=sin(t2); the integral becomes 1200udu.
  28. u=(1+(t12)2); the integral becomes 5/45/41udu.
  29. u=1t; the integral becomes

    11ucos(π(1u))du=11u[cosπcosusinπsinu]du=11ucosudu=11ucosudu=0
    since the integrand is odd.

  30. Setting u=cx and du=cdx gets you 1bcacb/ca/cf(cx)dx=cbau=bu=af(u)duc=1babaf(u)du.
  31. x0g(t)dt=121u=1x2duua=12(1a)u1a|1u=1x2=12(1a)(1(1x2)1a). As x1 the limit is 12(1a) if a<1, and the limit diverges to +∞ if a>1.
  32. 0t=πb1cos2t×(asint)dt=πt=0absin2tdt
  33. f(t)=2cos(3t)cos(2t);π/20(2cos(3t)cos(2t))=23

Integrals Involving Exponential and Logarithmic Functions

  1. 19x3(ln(x3)1)+C
  2. 2x(lnx2)+C
  3. lnx0etdt=et|lnx0=elnxe0=x1
  4. 13ln(sin(3x)+cos(3x))
  5. 12ln|csc(x2)+cot(x2)|+C
  6. 12(ln(cscx))2+C
  7. 13ln(267)
  8. y2ln|y+1|+C
  9. ln|sinxcosx|+C
  10. 13(1(lnx2))3/2+C
  11. Exact solution: e1e,R50=0.6258. Since f is decreasing, the right endpoint estimate underestimates the area.
  12. Exact solution: 2ln(3)ln(6)2,R50=0.2033. Since f is increasing, the right endpoint estimate overestimates the area.
  13. Exact solution: 1ln(4),R50=0.7164. Since f is increasing, the right endpoint estimate overestimates the area (the actual area is a larger negative number).

Integrals Resulting in Inverse Trigonometric

  1. sin1x|3/20=π3
  2. tan1x|13=π12
  3. sec1x|21=π4