Substitution
- u=h(x)u=h(x)
- du=8xdx;f(u)=18√u
- 15(x+1)5+C
- −112(3−2x)6+C
- √x2+1+C
- 18(x2−2x)4+C
- sinθ−sin3θ3+C
- (1−x)101101−(1−x)100100+C
- −122(7−11x2)+C
- −cos4θ4+C
- −cos3(πt)3π+C
- −14cos2(t2)+C
- −13(x3−3)+C
- −2(y3−2)3√1−y3
- 133(1−cos3θ)11+C
- 112(sin3θ−3sin2θ)4+C
- L50=−8.5779. The exact area is −818
- L50=−0.006399 … The exact area is 0.
- u=1+x2,du=2xdx,12∫21u−1/2du=√2−1
- u=1+t3,du=3t2du,13∫21u−1/2du=23(√2−1)
- u=cosθ,du=−sinθdθ,∫11/√2u−4du=13(2√2−1)
The antiderivative is y=sin(ln(2x)). Since the antiderivative is not continuous at x=0, one cannot find a value of C that would make y=sin(ln(2x))−C work as a definite integral.
The antiderivative is y=12sec2x. You should take C=−2 so that F(−π3)=0.
The antiderivative is y=13(2x3+1)3/2. One should take C=−13.- No, because the integrand is discontinuous at x=1.
- u=sin(t2); the integral becomes 12∫00udu.
- u=(1+(t−12)2); the integral becomes −∫5/45/41udu.
- u=1−t; the integral becomes
∫−11ucos(π(1−u))du=∫−11u[cosπcosu−sinπsinu]du=−∫−11ucosudu=∫1−1ucosudu=0
since the integrand is odd. - Setting u=cx and du=cdx gets you 1bc−ac∫b/ca/cf(cx)dx=cb−a∫u=bu=af(u)duc=1b−a∫baf(u)du.
- ∫x0g(t)dt=12∫1u=1−x2duua=12(1−a)u1−a|1u=1−x2=12(1−a)(1−(1−x2)1−a). As x→1 the limit is 12(1−a) if a<1, and the limit diverges to +∞ if a>1.
- ∫0t=πb√1−cos2t×(−asint)dt=∫πt=0absin2tdt
- f(t)=2cos(3t)−cos(2t);∫π/20(2cos(3t)−cos(2t))=−23
Integrals Involving Exponential and Logarithmic Functions
- 19x3(ln(x3)−1)+C
- 2√x(lnx−2)+C
- ∫lnx0etdt=et|lnx0=elnx−e0=x−1
- −13ln(sin(3x)+cos(3x))
- −12ln|csc(x2)+cot(x2)|+C
- −12(ln(cscx))2+C
- 13ln(267)
- y−2ln|y+1|+C
- ln|sinx−cosx|+C
- −13(1−(lnx2))3/2+C
- Exact solution: e−1e,R50=0.6258. Since f is decreasing, the right endpoint estimate underestimates the area.
- Exact solution: 2ln(3)−ln(6)2,R50=0.2033. Since f is increasing, the right endpoint estimate overestimates the area.
- Exact solution: −1ln(4),R50=−0.7164. Since f is increasing, the right endpoint estimate overestimates the area (the actual area is a larger negative number).
Integrals Resulting in Inverse Trigonometric
- sin−1x|√3/20=π3
- tan−1x|1√3=−π12
- sec−1x|√21=π4